IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Effects of disorder on collective modes in single- and double-layer Bose systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys.: Condens. Matter 8 1937
(http://iopscience.iop.org/0953-8984/8/12/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.208
The article was downloaded on 13/05/2010 at 16:25

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/12
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt8r(1996) 1937-1947. Printed in the UK

Effects of disorder on collective modes in single- and
double-layer Bose systems

B Tanatat and A K Dag

1 Department of Physics, Bilkent University, Bilkent, 06533 Ankara, Turkey
1 Department of Physics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada

Received 5 December 1995

Abstract. We report some new results from our study of two-dimensional (2D) Bose systems,
particularly the collective excitations in 2D charged Bose gas, in the presence of disorder. The
effects of disorder are taken into account through collisions the Bose particles suffer due to
disorder; these collisions are considered in the relaxation-time approximation within a number-
conserving scheme in the random-phase approximation (RPA)}a0. The dependence of the
plasmon dispersion on the boson interparticle potential, and the critical wave vector below which
the plasma excitations cannot propagate, are investigated. The static structuré fariarthe
presence of disorder is evaluated in closed form. We consider single- and double-layer systems
and compare our results with the corresponding electron gas systems. A double-layer system in
which one layer is disordered while the other is disorder-free exhibits results analogous to the
‘drag effect’. Many-body extensions beyond the RPA are also discussed.

1. Introduction

The interest in two-dimensional electronic systems such as electrons at the interfaces of
semiconductors and similar devices has a long and rich history [1]. Studies on low-
dimensional Bose systems, on the other hand, have not received as much attention in
recent years as low-dimensional Fermi—especially electron and hole—systems. However,
Bose systems are interesting in their own right, and in the context of a possible theory of
high-temperature superconductivity low-dimensional Bose systems have been invoked [2—
5]. An experimental realization of a low-dimensional charged Bose gas in condensed-matter
systems such as layered superconductors is thought to be possible through the formation
of bipolarons. A reasonably strong coupling of electrons with phonons (or with some
other neutral bosonic excitations) leads to polarons. The latter can attract each other via
an induced lattice distortion if the resultant attractive interaction overcomes the Coulomb
repulsion, and can form bipolarons [2, 5]. We may regard the bipolaronic carriers as charged
Bose particles. Dielectric properties of charged bosons were recently studied bye€Conti

al [6]. In a previous paper [7] we have discussed two important many-body properties,
namely collective modes (plasmons) and screened interactions in a pure charged Bose gas
(CBG) system which is free of disorder or impurity.

It is known [8-10] that disorder, taken into account in the form of carrier—impurity
collisions, severely constrains plasmon propagation in a single-layer electron gas, and that
this constraint may be partially remedied in a double-layer electron gas. The main finding
is that in lower dimensions (lower than three) the plasmon dispersion in the absence of
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disorder becomes gapless and develops a cut-off in wave vector in the presence of disorder;
collective excitations having wave vectors less than the cut-off value cannot propagate.

In this paper we study the effects of disorder on collective modes in two-dimensional
(2D) Bose systems and present new results. One distinguishing feature of the Bose systems
that we consider is that & = 0 all of the particles are assumed to be in a condensate
state both in the absence and in the presence of disorder. We neglect the depletion of the
condensate due to interactions and disorder. It was argued that disorder cannot completely
deplete the condensate [11]. In our study we do not consider a strong disorder: the latter is
expected to lead to a localization of bosons [11]. For clean (disorder-free) two-dimensional
CBG systems we have reported [7] that the plasmon characteristics are similar to those
found for the corresponding electron gas systems. We believe that it would be of interest
to perform a similar study in the presence of disorder. Dielectric properties of a disordered
Bose condensate were also investigated within the memory-function formalism [12]. Our
approach is phenomenological in the sense that disorder is treated within the relaxation-
time approximation, with a parameterappearing in the density response function. For
a constantr it gives the same result as the memory-function formalism. Although we
do not specify the origin of disorder, it may arise from scattering mechanisms such as
impurity scattering, and carrier—carrier or carrier—phonon interactions. More realistically, a
momentum-independent [2] may be regarded as describing collisions with point defects
(or acoustic phonons).

The rest of this paper is organized as follows. In the next section we introduce the
effects of disorder within a humber-conserving scheme to calculate the plasmon dispersion
of a 2D-CBG. We also investigate the role of the interaction potential in the properties of
plasmons. An analytic expression is given for the static structure fa¢4orfor a disordered
CBG. Plasmons in a double-layer, disordered CBG are studied in section 3. Intralayer and
interlayer static structure factors are calculated. To compare our results with the CBG,
we also calculate the plasmon dispersions in a double-layer, 2D electron gas in section 4.
Finally, in section 5 we conclude with a discussion of our results.

2. Collective modes of a 2D disordered Bose system

2.1. Plasmon dispersion

We consider a single-layer, one-component, disordered Bose gas. At zero temperature, the
system is assumed to be in the condensate phase both in the absence and in the presence of
disorder. The density—density response function for an interacting system of bosons within
the random-phase approximation (RPA) is giventy, o) = x°(q, w)/[1 — v, x°(q, ®)],

in which the response function for a non-interacting system without disordér=a0 is

L T B
(w+1n)* — €5
with the free-particle energy, = ¢?/2m, andn a positive infinitesimal quantity (we take

h = 1). v, is any physically reasonable (Fourier-transformable) potential for a 2D system. It
may be recalled that the plasmon dispersion for a 2D-CBG interacting (iz-a-potential,
obtained from the poles of the RPA density—density response function, yields the Bogoliubov
result

x°(q, w) =

wpi(q) = E[x +x%Y? (2

with x = ¢/q,, and E; = g?/2m. Here we have defined the screening wave vector
of the Bose condensaig = (8mn/ap)Y/3. Defining a dimensionless density parameter



Effects of disorder on collective modes 1939

r2 = 1/(wna?%), whereay is the effective Bohr radius, andis the 2D density of bosons,

we can express the screening wave vectog,ag = 2/r2>.
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Figure 1. Plasmon dispersions of a disorderedFigure 2. The critical wave vectory, above which

single-layer CBG for 1(2rE,)? = 0.1 (solid) and plasmons can propagate as a function gf2tE;)2.

1/(2tEy)? = 1 (dotted). The parameters used for each curve are described in
the text.

The effect of disorder in the many-body dynamics of the Bose system will be included
in the form of collisions the Bose particles may undergo in the presence of disorder. The
collisions will be treated in the relaxation-time approximation. The RPA polarizability in
this approximation and in the number-conserving scheme is given by [13-15]

o, xolg. ©.) _ g, -

@@ ln=, + (/D) x0(g, @)/ x0(q, 0 wwy — €2

wherew, = w+ i/t (t is the relaxation time which will be treated as a phenomenological
parameter), angto(g, 0) is the static susceptibility. In the limit — oo, xj(q, w; 1/ — 0)
becomes the collisionlesgy(q, w). The plasmon dispersion for a 2D disordered Bose
condensate takes the form
1/2 i
wpi(q) = [55 + 2ne v, — 4‘L'2j| T o (4)

for any v, as specified earlier. We note that the above expression is valid within the RPA
for all wave vectors, since no approximations were made to the density response function.
Disorder effects (i.e., finite’) tend to reduce the plasmon dispersion. Similar conclusions
were drawn by Gold [16] within the memory-function approach to treating the disordered
Bose condensate. Taking = 27e?/q, we study the dependence of plasmon dispersion on
the relaxation time for a 2D-CBG as shown in figure 1. The imaginary part to the plasmon
dispersion is independent gfwithin the RPA, a situation different from that for the electron
gas case in which it is wave-vector dependent [8].

As in the case of 2D electron gas [8, 9], there exists a critical wave vectbelow
which the collective modes do not propagate. The criticals obtained from the solution
of

2
gt +anmg2v, — ()" =0, (5)
T
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Figure 3. Plasmon dispersions for a logarithmic Figure 4. The static structure factaf(¢) for a single-
potential for ¥(2tE;) = 0, 0.75, and 1.5, indicated layer CBG within the RPA and27)~2 = 0, 1, and 5
by solid, dashed, and dotted lines, respectively. shown by dotted, dashed, and solid lines, respectively.

To get more insight into the dependenceypbn the interaction potential and the relaxation
time ¢ we investigate several cases. For the Couldathb-)-potential in 2D, the Fourier
component is, = 2we?/q, andg,. is obtained from the above fourth-degree equation, i.e.,
x4+ x. — 1/(47%) = 0, where we have uset. = q./q;, and? = tE,. If a short-ranged
potential (as-function in real space, and constdftin momentum space) described by the
parametery = 2nVy/E, is considered, we obtain

1/2

v 1 17Y2
Xe = |:_2 + é |:7/2+ _,":2:| :| . (6)

A dipole interaction of the formv(r) = (p?/r®)[1 — exp(—r?/d?)] where p is the dipole
strength, was recently studied by Kachintsev and Ulloa [17] to describe 2D excitons. For
comparison, we also employ this interaction, of which the Fourier transigris well
behaved [17]. On the other hand, a logarithmic potential [A8) = —e?qg,Inr, with
Fourier transformy, = 2re?q,/q?, yields

1/4
wo= (0 -1) @

for the cut-off wave vector. In figure 2 we shaw for various models of the interaction
potential v, in a 2D Bose system as a function 6ft%)~1. Solid, dotted, dashed, and
chain lines indicate Coulomlgl/r)-, short-ranged, dipole, and logarithmic interactions,
respectively. We observe that as — oo, all curves except that for the logarithmic
interaction approacly. = 0, indicating that plasmon dispersion starts frgm= 0 in
this limit. The logarithmic potential is somewhat different to the others in the sense that
even in the absence of collisions the plasmon dispersion for long wavelengths has a gap (as
in the 3D case), i.ewp/Es = (14 x*)Y2. This is in agreement with previous findings for
this potential [18, 19]. The chain curve in figure 2 implies a softening of the logarithmic
potential plasmons beyond a critical wave veajpronly when (47%)~! > 1. To see how
the relaxation time affects the plasmon dispersion for a logarithmic potential, we show in
figure 3 the collective mode as a function.ofor various values of27) 2.

We finally consider an interaction potential of the fotrr) = VoKo(r/A), Where Vg,
is a constantKo(x) is the zeroth-order modified Bessel function, and range parameter.
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Such an interaction has been used in connection with the dynamics of flux-line lattices in
superconducting systems [20]. For short distanees>(0) the above interaction behaves
asv(r) ~ Inr. The Fourier component is given hy = 27Vy/(¢? + »~2). Note that for
L — oo, we gety, ~ 1/¢?, 3D-like behaviour. If we now look at the critical wave vector
q. above which plasmons propagate, we need to solve
4 x2 1

x;+ A 2t 472 = 0 (8)
where we have definedd = 4nVo/(ESqS2), andi = Ags. The short-dashed line in figure 2
showsx, as a function of the relaxation-time parameterfto*; 1 andA = 5. We observe
that the qualitative behaviour af for the Kq(x)-potential is similar to that in the previous
examples except for for thénr)-potential. We can perhaps understand this qualitative
difference by noting thait(r) behaves as Inonly at short distances, whereas the collective
excitations are more concerned with long distances (i.e., gmiaélhaviour).

2.2. Static structure factor

The static structure factof(g) for a single-layer CBG may be calculated by using the
relation [21]

1 [ .
S(q) =—— / do x(q,iw) 9
nim 0

where the density—density response function is of the farm= xj/[1 — v, x§] in the
RPA, where x§ which includes the effects of disorder has already been introduced in
equation (3). We calculat§(g) for a 2D-CBG for whichv, = 2re?/q, and obtain [22]
S(q) = (I/m)e, I(A), where

J1K [7; —tan! <}//£>} for A >0
I(A)=211 forA=0 (20)
iA tanh1< 111) for A <0

and A = 4(¢7 + 2nv,¢,) — 1/7% S(q) for the disorder-free limit, i.e., when/t — 0, can
be obtained either from the first expression in equation (10) or from equation (9) directly,
and we findS(¢q) = [1 + 2nv,/¢,]~Y/? in agreement with the previously known result [23].
The effect of finiter, i.e., disorder onS(q), is illustrated in figure 4. As /&r gets larger
with increasing disorder, the magnitude $fy) becomes smaller, and it approaches unity
in the largeg limit in a slower fashion than for a disorder-free system. For the disordered
system, another interesting feature $ify) is that it is a smooth function of the disorder
parameter and does not reflect the presence of a sharp aytiofthe plasmon dispersion.
The dotted line in figure 4 shows the structure factor in the absence of disorder, i.e., for
1/t = 0, and we draw attention to the notable difference in the finitases.

The pair correlation functiorz(r) is of equal physical interest. It is the probability
that two particles may be found at a relative distanc@nd can be obtained by Fourier
transformingS(q):

g(r)=1— 2r5/3/ dx xJo(xF)[1 — S(x)] (11)
0
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where Jo(x) is the zeroth-order Bessel function of the first kind, &nd rg,. We note that

g(r) at small distances exhibits the familiar behaviour, namely that in the RPA it remains
strongly negative for; > 1. This feature persists in the presence or absence of disorder.
To remedy this deficiency one needs to go beyond the RPA; we discuss this in section 5.

3. A double-layer charged Bose system: effects of disorder

3.1. Plasmon dispersions

The density—density response for a two-component or two-layer system is defined by
Oi = D_; Xij Vj‘”‘t where g; is the induced charge density for tlith species or the layer,

and similarly V; stands for the external perturbation. The RPA assumes that the induced
charge density may be expressedoas- > j XS(Vf’“+ Vfﬁ), where the effective potential
takes the formVjeff = ) , VixPx in which v;;, are bare interactions. Combining the above,
the inverse of the density—density response matrix is obtained as

S g )]t = vag) —v12(q)
(g, o)) = ( —21(9) [X2(q. )] — v22(q) > (12)
The collective modes of the system are obtained by solving D&t = 0.

We first discuss the collective excitations of a single-layer, disordered, two-component
charged Bose system in an analytically solvable model. In this eases viz = vy =
2me?/q where we assume that particles interact via the long-range Coulomb potential. We
also assume the same relaxation titmier both components having the same massThey
only differ in their number densities for which we define= n,/n1. These assumptions
lead to the constraing?, = ax’,. For this simplified model the plasmon dispersions can
be obtained analytically. We find

i 4 x 1 7Y?
wpl/Es:_E‘f‘ X +E_ﬁ (13)
where
1+« 4o V?
o=, [“E [1‘ (l—l—a)] : (14)

Within the same model, analytical results can be obtained also for a double-layer
system. The interlayer and intralayer Coulomb interactions wafe= 2me?/q, and
v12 = [2me?/q] exp(—qd), respectivelyd being the separation distance between the two
parallel layers. We do not allow any hopping or tunnelling between the layers. The resulting
plasmon dispersions are given by exactly the same equation as above (equation (13)), with
the replacement

_l+a 1 A ]
=" 1_@?[1*[1 Grap @) )

whered = dg,. Figure 5 shows the plasmon dispersions for the double-layer system in
which the relaxation time is the same for both layers. Also shown by the dotted lines are
the collision-free plasmon modes. Mode softenings for the two branches occur, as in the
single-layer case. The above plasmon dispersion expressions further simplify if we consider
two identical layers, i.eq = 1, to read [23]
1/2
! } . (16)

472

i -
wpl/Ey = —%z + [x4 +x(l+e™) -
T
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Figure 5. Collective modes of a double-layer, Figure 6. Collective modes of a double-layer CBG

disordered CBG as a function af = ¢/¢;. We have where one layer is collision-free and the other layer

chosen the ratio of layer densities= ny/n; = 0.5. has(2rE,)~2 = 1. The layer separation i& = 0, 5.
Solid lines indicate the results of numerical calculation
whereas the dotted line is from an analytic calculation
of wp (see the text).

We now consider a scenario which may be regarded as a collisional analogue of the
recently discussed [24] drag effect in a bilayer system. This is to consider a double-layer
CBG system in which one of the layers is collision-free, and the other one includes the
effects of collisions. We set out to study how the effects of collisions in one layer influence
the other one. Assuming for simplicity that both layers are identical except for as regards
the relaxation time considered for only one layer, the density response functions are given
by

0 2ne,

= and o=—"27 . 17
= 2_ €2 X22 ww, — €2 (7)

The collective modes of the system are obtained from the solution of a fourth-degree
equation:

i i ;
@+ @20 +aH - L+ o+t + 20+ 21— e =0 (18)
T T

in which @ = w/E,;. We show the real parts of the plasmon dispersions in figure 6. There
are two modes, one of which is undamped and starts fram0, while the other is damped
and exists only above a critical wave vector. This is analogous to the drag effect in a bilayer
electron system [24]. If we assume that a collective mode of equation (18) is of the form
o = wp — i6p, Where the damping terdy is small, we obtain the following approximate
expressions:

ws = x84 2¢% — 24%p — (x + x*) /472

1 4 . (19)

Sp =~ —g(x +x"4+wp)/(x +x" — wp)
wherep = 1 — e2d_ The collective mode described by the above expressions is the
damped plasmon obtained numerically above. We shgwn figure 6 by the dotted line,
where it coincides with the numerical solution in the low-frequency regime, captured by
the above analysis.
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Figure 7. Static structure factor$11(q) andSi2(g) for  Figure 8. Collective modes of a double-layer electron
a double-layer CBG within the RPA an@7)—2 = 0, gas where one layer is collision-free and the other layer
1, and 5 shown by dotted, dashed, and solid linehas ¥(rEr) = 0.2 andvpgte/Er = 5.

respectively.

3.2. Static structure factors

The static structure factors for a double-layer system are evaluated in a manner similar to
that for the single-layer system. Inverting the matrix (equation (12)) we obtain components
of the density—density response function, and then we employ a relation of the form used
by Zheng and MacDonald (see [21]). For the case of two identical layers with the same
relaxation-time parameter, we obtain the following expressions for the intralayer and
interlayer static structure factors, denotedfay(g) and S12(g), respectively:

1 1 1 1
S11(q) = ;%5 [H(AD)+1(AY] Silg) = ;%5 [I(AL) — I(A)] (20)

in which Ay = 4[65+2neq(v11ﬂ:v12)] —1/7?, andI(A) is defined in equation (10). As in

the single-layer system, the expressions $or and S», reduce to the disorder-free results
[25] ast — oo. We display the effects of finite relaxation timeon the intralayer and
interlayer static structure factors far = 1 in figure 7. The upper and lower curves are

for S11(¢) and S12(q), respectively. The dotted, dashed, and solid lines indic2ig = 0,

1, and 5, respectively. The intralayer and interlayer structure factors in the presence of
disorder are lower than in the clean cases as would be expected.

4. Comparison with a disordered electron gas system

It will be of interest to compare the results for the model of a charged Bose bilayer, discussed
in the previous section, with those for a corresponding electron gas bilayer. However, the
dynamic polarizability of an electron gas layer is considerably more involved and hence
we shall consider a long-wavelength and low-frequency approximation (i.€, kr and

o < Er, wherekr and Ex are Fermi wave vector and energy, respectively). We assume
one of the layers to be clean and described by the polarization function

g =" 1 | @y

(a)2 _ v%qZ)l/z
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and the other one is disordered with a polarization function given by [8—10]

0 m w
,w)y=——[1— . 22

X22(6] a)) = [ (0)3_ — U%qz)l/z — |/'L'j| ( )
where vy is the Fermi velocity assumed to be the same for both layers. Calculating the
collective modes numerically by solving the mode equation [26]

1— (X1 + x22) + pv2xsixgs =0 (23)

where p = 1 — exp(—2gd), we obtain two solutions. Figure 8 displays the numerically
obtained collective modes in a double-layer electron gas. We observe that one mode starts
from the origin (i.e., is unaffected by disorder) and behaves-@%? (the optical mode),
whereas the other mode exists only above a critical wave vector and exhibits adinear
dependence (the acoustic mode).

It may be recalled that for the special case of a disordered two-layer electron system
with the same relaxation time, and Fermi velocity -, but different masses, a closed-form
solution for the collective modes is possible in the smalimit [9]. It was found that the
two plasmon modes (optical and acoustic) can only propagate above certain critical wave
vectors. In other words, both the modes are affected by disorder.

5. Discussion

We have assumed without proof that there is a condensate in a 2D-CBG both in the absence
and in the presence of disorder. There has been some recent theoretical work [27] on
the question of CBG condensate in two-dimensional systems. Pitaevskii and Stringari [27]
derive an inequality for the momentum distribution functignwhich involves the structure
factor S(¢). Magro and Ceperley [28] use a combination of the findings in [27] and a
diffusion Monte Carlo method to argue that the condensate fraationill be zero for a
2D-CBG with a(Inr)-potential. However, it seems that their argument could formally be
applied also to a 3D-CBG which does have a condensate. Furthermore, the derivation in
[27] assumes thab(g) has a gap. It is known that in 2D the plasmon dispersign)
is gapless for g1/r)-potential, but not for alnr)-potential. In the presence of disorder
w(q), still gapless, develops a cut-off wave-vectpr, i.e., Refp(q)] is zero belowg.,.
Additionally, for a (Inr)-potential in contrast to &1/r)-potential, the plasmon dispersion
has a gap as in a 3D-CBG. In view of these considerations we feel that the question of a
condensate in a 2D-CBG is still an open problem. For a two-layer system, the interlayer
Coulomb coupling brings in another element that would make it different from a strictly
2D system. In fact, it can be regarded as an intermediate between a bulk 3D system and a
2D single-layer system. Therefore, the arguments developed in the context of a condensate
for a single-layer 2D system need not strictly apply to the case of a two-layer system. With
these provisos we have assumed a condensate along the lines given by Alexandrov and
Mott (see [2]), and of Gold [4, 23].

In the foregoing analysis of the plasmon dispersions we have chiefly used the RPA.
An intuitively appealing way of including the exchange—correlation effects is through the
local-field factor which has been extensively used for the electron gas. They are also
important in the CBG; for instance, a roton-like structure appears [24] in the plasmon
dispersion at low density-( >> 1) when a local-field factor is introduced. The local-field
concept is on the same level of semi-phenomenological approximation as the relaxation-time
scheme discussed in the previous sections [9]. A simple approximation assuming a delta-
function form (in real space) for the exchange interaction [29] leads to a modification of the
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RPA dielectric function with the replacement of the bare interactign by v(g) — J/2.
Here J is a constant (inj-space) and may be identified with the local-field factor through
v(g)G(g) = J/2. It is interesting to note that the resulting plasmon dispersion for a
single-layer, disordered CBG using this local-field factor is

i 4 -, 1 1/2
whereJ = nJ/E,. When we employ the logarithmic potential (cf. section 2), the above

dispersion relation is altered only in the linear term where it is replaced by unity. The critical
wave vectorx., below which the plasma excitations are not supported for the logarithmic
potential is now given by

1/271/2

el g+ 5 - ()] | @)

On the other hand, the Hubbard approximation to the local-field factor appropriate for a clean
2D-CBG is given by [23]G; = rZ3x/(14+x2)Y/2. We neglect the effects of scattering from
disorder onG(x), as in earlier calculations [9, 23]. With this approximation, the plasmon
dispersion for a single-layer, disordered, CBG interacting via a Coulomb potential becomes

i r23x 1 12
_ 4 _ s -
wpl/Es = >z + |:x +x |:1 (1+x2)1/2:| 4%2:| . (26)

We note that the long-wavelength behaviouregf is little affected, whilst the local-field
effects will soften the plasmon mode at larger values; ofThe critical wave vectox,,
below which plasmon excitations are not supported, is obtained from the modified equation

23 1
4 K c _
KA [“mxzwz}‘w—“ @n

Inclusion of local-field effects increases in general, for a givert, compared with the
result without the local-field factor. Similar trends are expected in the case of a double-layer
disordered CBG.

We note that the effects of the local-field corrections may also be incorporated in our
analytic expressions for the static structure factors, and more sophisticated theories may
be constructed. Local-field factors aifgl(¢) have been calculated self-consistently for
a double-layer CBG in the absence of disorder [25]. Our analytical results for plasmon
dispersion relations and static structure factors for the single- and double-layer disordered
Bose systems may be used as input in more improved many-body theories such as ground-
state calculations, disorder-induced superfluid—insulator transitions, and charge-density-wave
instability in Bose systems. Finally, our results may also be helpful in distinguishing the
Fermi and Bose liquid models of high- superconductors.

In summary, we have studied some new features of the collective excitations in a single-
and double-layer charged Bose gas in the presence of disorder whose effect has been taken
into account through collisions in the relaxation-time approximation. We have found that
there is a critical wave vector below which plasmons do not propagate, as in the electron
gas case. More varied results are obtained if in a two-layer system one of the layers is
disordered while the other layer is disorder-free. We have investigated the role of the boson
interaction potential for the collective excitations. Closed-form expressions are given for
the static structure factd¥(g) in single- and double-layer systems which may be useful for
subsequent applications. Many-body corrections beyond the RPA are also briefly mentioned.
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